首页> 外文OA文献 >Linear, Second order and Unconditionally Energy stable schemes for The Viscous Cahn-Hilliard Equation with hyperbolic relaxation using the invariant energy quadratization method
【2h】

Linear, Second order and Unconditionally Energy stable schemes for The Viscous Cahn-Hilliard Equation with hyperbolic relaxation using the invariant energy quadratization method

机译:线性,二阶和无条件能量稳定方案   使用不变量的具有双曲松弛的粘性Cahn-Hilliard方程   能量四边化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider numerical approximations for the viscousCahn-Hilliard equation with hyperbolic relaxation. This type of equationsprocesses energy-dissipative structure. The main challenge in solving such adiffusive system numerically is how to develop high order temporaldiscretization for the hyperbolic and nonlinear terms, allowing largetime-marching step, while preserving the energy stability, i.e. the energydissipative structure at the time-discrete level. We resolve this issue bydeveloping two second-order time-marching schemes using the recently developed"Invariant Energy Quadratization" approach where all nonlinear terms arediscretized semi-explicitly. In each time step, one only needs to solve asymmetric positive definite (SPD) linear system. All the proposed schemes arerigorously proven to be unconditionally energy stable, and the second-orderconvergence in time has been verified by time step refinement testsnumerically. Various 2D and 3D numerical simulations are presented todemonstrate the stability, accuracy and efficiency of the proposed schemes.
机译:在本文中,我们考虑具有双曲松弛的粘性Cahn-Hilliard方程的数值近似。这类方程式处理能量耗散结构。在数值上求解这种扩散系统的主要挑战是如何针对双曲和非线性项发展高阶时间离散化,允许较大的时间步长,同时保持能量稳定性,即时间离散级的能量耗散结构。我们通过使用最近开发的“不变能量二次化”方法(其中所有非线性项均半显式离散)开发了两个二阶时间行进方案来解决此问题。在每一时间步中,仅需求解非对称正定(SPD)线性系统。所有提出的方案都经过严格证明是无条件的能量稳定,并且通过时间步细化测试对时间的二阶收敛进行了数值验证。提出了各种2D和3D数值模拟,以证明所提出方案的稳定性,准确性和效率。

著录项

  • 作者

    Yang, Xiaofeng; Zhao, Jia;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号